

Master EDO parcours EMD3P & ESSI année universitaire 2024-2025 — semester 6

Évaluation socioéconomique des projets

Séance 7 Unité de mesure commune des effets

Cours proposé par **Clément Carbonnier** clement.carbonnier02@univ-paris8.fr http://carbonnier.eu/evaluation.html

Plan des séances

Introduction aux principes de l'évaluation

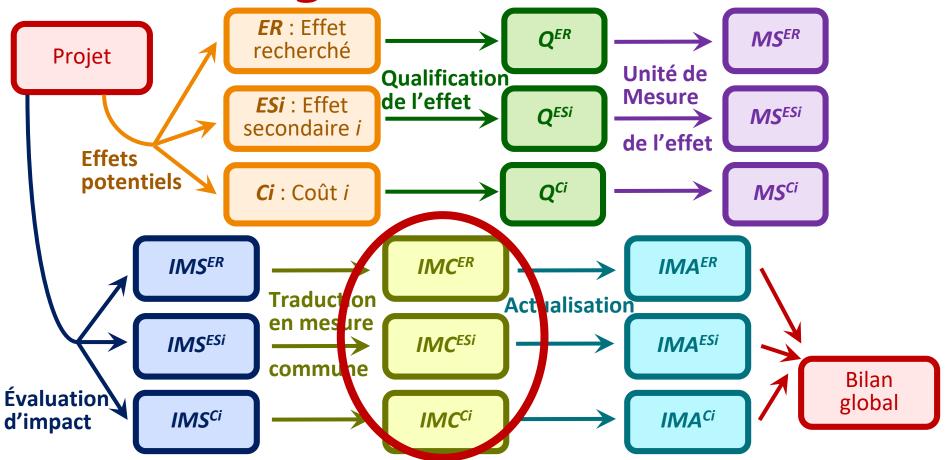
- Séance 1 : Introduction à l'évaluation socioéconomique
- Séance 2 : Deux exemples d'analyses coûts-bénéfices

Qualifier et définir les effets

- Séance 3 : Définir et mesurer la pauvreté
- Séance 4 : Qu'est-ce que le bien-être des populations ?

L'évaluation d'impact

- Séance 5 : Évaluations d'impact qualitatives
- Séance 6 : Évaluations d'impact quantitatives


Comparer les mesures

- Séance 7 : Unité de mesure commune des effets
 - Séance 8 : Le problème de l'agrégation des préférences
 - Séance 9 : La question de la temporalité

Comment faire de l'évaluation et que faire des résultats

Séance 10 : Organisation institutionnelle de l'évaluation

Le schéma général

Plan de la session

- 1. Surplus et préférences révélées
- 2. Méthode hédoniste en environnement
- 3. Évaluation contingente, la valeur d'une vie
- 4. Unité commune hors disposition à payer

Plan de la session

1. Surplus et préférences révélées

- 2. Méthode hédoniste en environnement
- 3. Évaluation contingente, la valeur d'une vie
- 4. Unité commune hors disposition à payer

Le surplus du consommateur

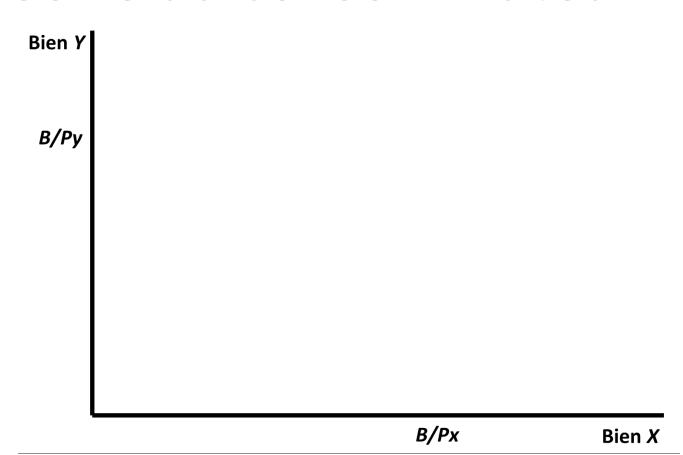
Alfred Marshall (1890) Principles of Economics, London: Macmillan and Co.

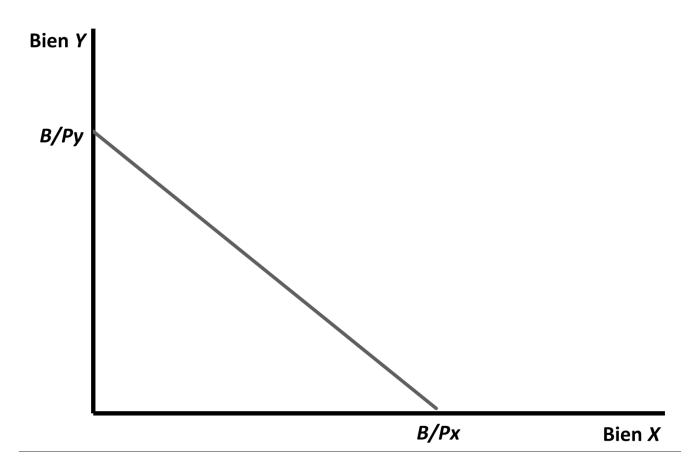
Let us take the case of a man, who, if the price of tea were 20s. a pound, would just be induced to buy one pound annually; who would just be induced to buy two pounds if the price were 14s., three pounds if the price were 10s., four pounds if the price were 6s., five pounds if the price were 4s., six pounds if the price were 3s., and who, the price being actually 2s., does purchase seven pounds. We have to investigate the consumer's surplus which he derives from his power of purchasing tea at 2s. a pound.

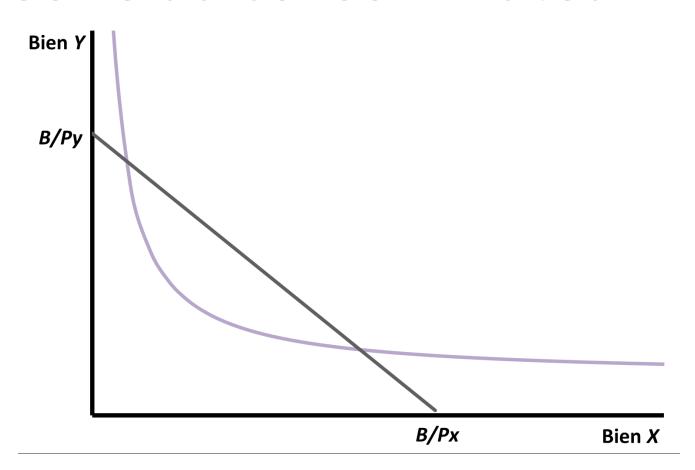
Le surplus du consommateur

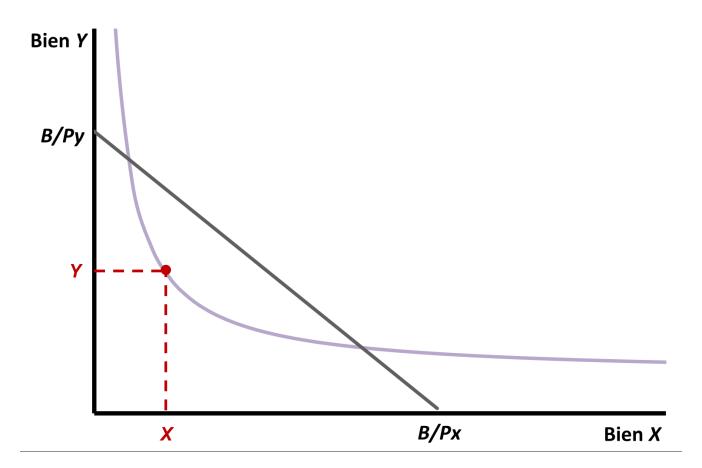
Alfred Marshall (1890) Principles of Economics, London: Macmillan and Co.

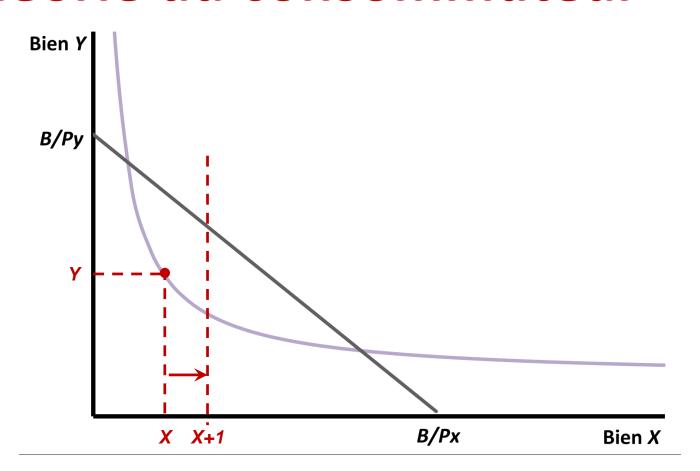
The fact that he would just be induced to purchase one pound if the price were 20s., proves that the total enjoyment or satisfaction which he derives from that pound is as great as that which he could obtain by spending 20s. on other things. When the price falls to 14s., he could, if he chose, continue to buy only one pound. He would then get for 14s. what was worth to him at least 20s.; and he will obtain a surplus satisfaction worth to him at least 6s., or in other words a consumer's surplus of at least 6s. But in fact he buys a second pound of his own free choice, thus showing that he regards it as worth to him at least 14s., and that this represents the additional utility of the second pound to him.

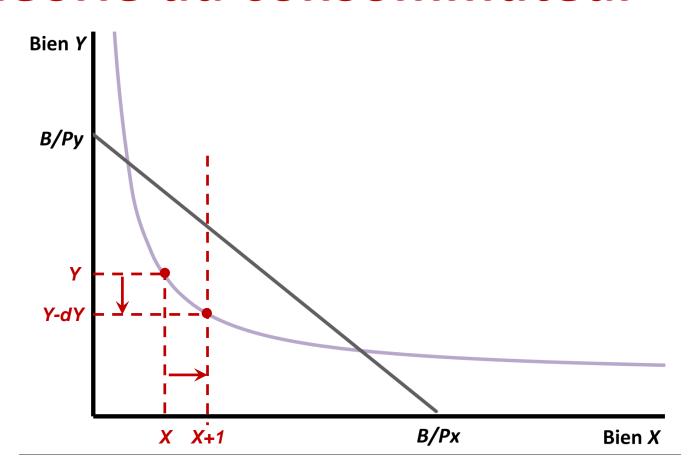

Les limites du surplus

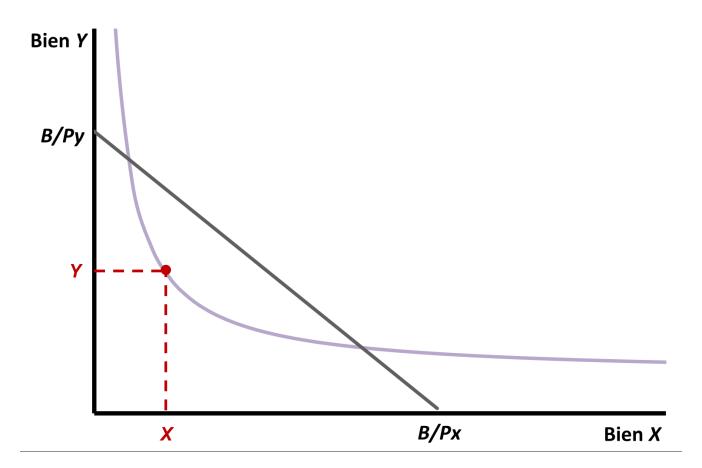

Alfred Marshall (1890) Principles of Economics, London: Macmillan and Co.

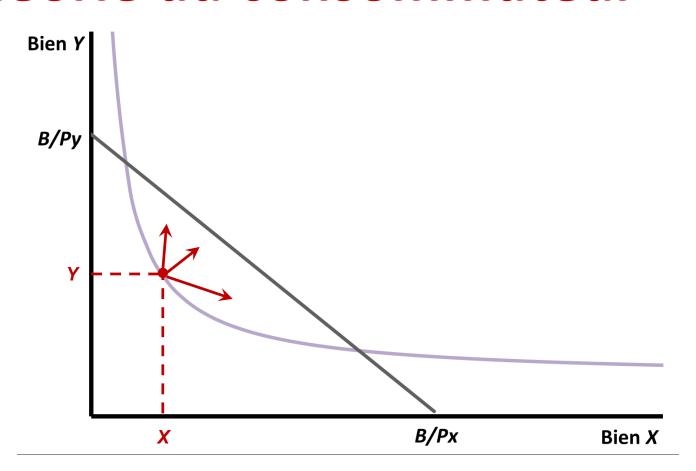

In the same way if we were to neglect for the moment the fact that the same sum of money represents different amounts of pleasure to different people, we might measure the surplus satisfaction which the sale of tea affords, say, in the London market, by the aggregate of the sums by which the prices shown in a complete list of demand prices for tea exceeds its selling price.

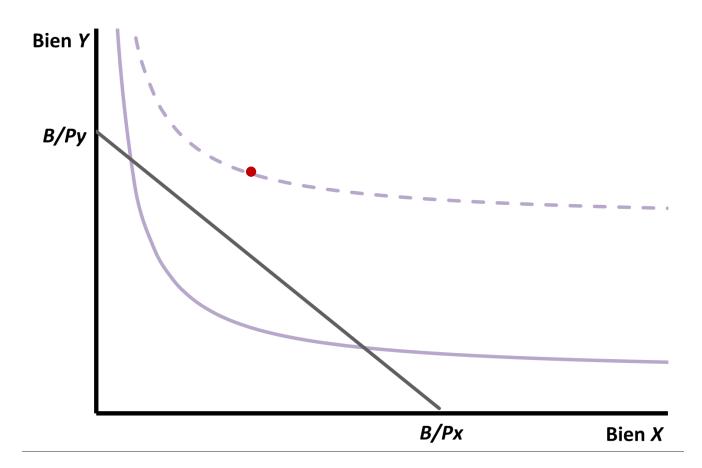


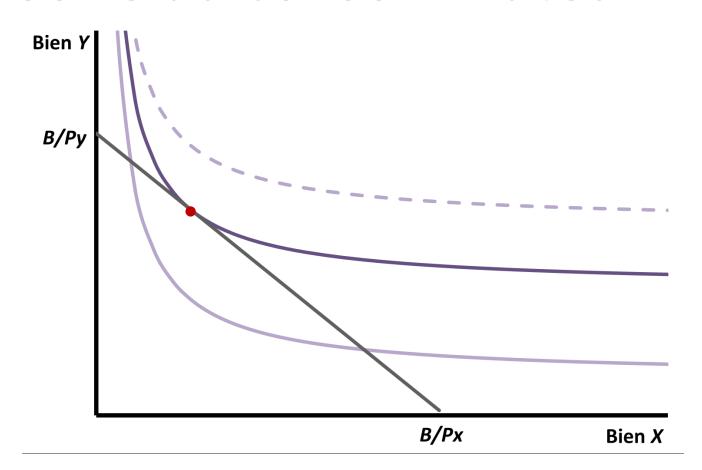


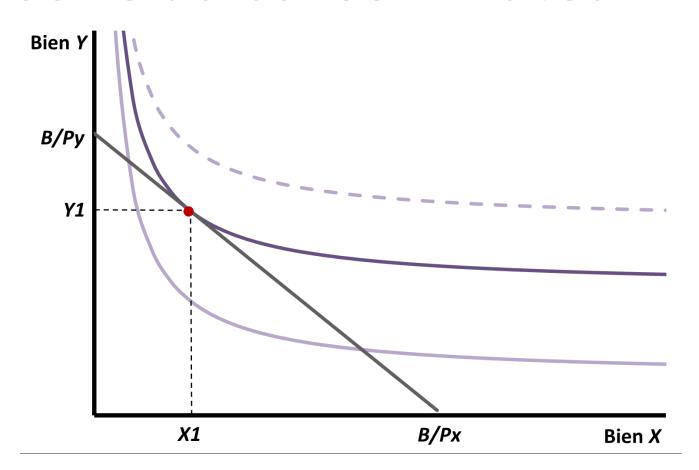












Arbitrage entre consommations x et y

```
Utilité U(x,y); Budget B; prix p_x et p_y
```

Contrainte de budget :

Fonction à maximiser :

Maximisation de l'utilité

Condition du 1^{er} ordre:

Condition d'optimisation :

Arbitrage entre consommations x et y

```
Utilité U(x,y); Budget B; prix p_x et p_y
Contrainte de budget : p_x \cdot x + p_y \cdot y = B
Fonction à maximiser :
```

Maximisation de l'utilité

Condition du 1^{er} ordre :

Condition d'optimisation :

Arbitrage entre consommations x et y

```
Utilité U(x,y); Budget B; prix p_x et p_y
```

Contrainte de budget : $p_x \cdot x + p_y \cdot y = B$

Fonction à maximiser : $U[x, (p_x \cdot x - B)/p_y]$

Maximisation de l'utilité

Condition du 1^{er} ordre :

Condition d'optimisation :

Arbitrage entre consommations x et y

```
Utilité U(x,y); Budget B; prix p_x et p_y
```

Contrainte de budget : $p_x \cdot x + p_y \cdot y = B$

Fonction à maximiser : $U[x, (p_x \cdot x - B)/p_y]$

Maximisation de l'utilité

Condition du 1^{er} ordre : $U'_x - (p_x/p_y).U'_y = 0$

Condition d'optimisation :

Arbitrage entre consommations x et y

Utilité U(x,y); Budget B; prix p_x et p_y Contrainte de budget : $p_x \cdot x + p_y \cdot y = B$

Fonction à maximiser : $U[x, (p_x \cdot x - B)/p_y]$

Maximisation de l'utilité

Condition du 1^{er} ordre : $U'_x - (p_x/p_y).U'_y = 0$

Condition d'optimisation : TMS = $U'_x/U'_y = p_x/p_y$

Arbitrage entre consommations x et y

Utilité U(x,y); Budget B; prix p_x et p_y Contrainte de budget : $p_x.x + p_y.y = B$ Fonction à maximiser : $U[x, (p_x.x - B)/p_y]$

Maximisation de l'utilité

Condition du 1^{er} ordre : U'_x - (p_x/p_y) . U'_y = 0 Condition d'optimisation : TMS = U'_x/U'_y = p_x/p_y Autre formulation : U'_x/p_x = U'_y/p_y

Arbitrage entre consommations x et y

Utilité U(x,y); Budget B; prix p_x et p_y Contrainte de budget : $p_x.x + p_y.y = B$ Fonction à maximiser : $U[x, (p_x.x - B)/p_y]$

Maximisation de l'utilité

Condition du 1^{er} ordre : U'_x - (p_x/p_y) . U'_y = 0 Condition d'optimisation : TMS = U'_x/U'_y = p_x/p_y Autre formulation : U'_x/p_x = U'_y/p_y Généralisable : U'_x/p_x = U'_y/p_y = U'_z/p_z = U'_w/p_w = ...

Les rapports utilité marginale/prix tous égaux

$$U_x'/p_x = U_y'/p_y$$

Égalité des utilités supplémentaires par euro dépensé

Supposons $U'_x/p_x > U'_y/p_y$

Une unité de y en mois, économie :

Perte d'utilité:

Achat de combien d'unités de x :

Gain d'utilité:

Les rapports utilité marginale/prix tous égaux

$$U_x'/p_x = U_y'/p_y$$

Égalité des utilités supplémentaires par euro dépensé

Supposons $U'_x/p_x > U'_y/p_y$

Une unité de y en mois, économie : p_v

Perte d'utilité:

Achat de combien d'unités de x :

Gain d'utilité:

Les rapports utilité marginale/prix tous égaux

$$U_x'/p_x = U_y'/p_y$$

Égalité des utilités supplémentaires par euro dépensé

Supposons $U'_x/p_x > U'_y/p_y$

Une unité de y en mois, économie : p_v

Perte d'utilité : U',

Achat de combien d'unités de x :

Gain d'utilité:

Les rapports utilité marginale/prix tous égaux

$$U'_x/p_x = U'_y/p_y$$

Égalité des utilités supplémentaires par euro dépensé

Supposons $U'_x/p_x > U'_y/p_y$

Une unité de y en mois, économie : p_v

Perte d'utilité : U',

Achat de combien d'unités de x : p_v/p_x

Gain d'utilité:

Les rapports utilité marginale/prix tous égaux

$$U'_x/p_x = U'_y/p_y$$

Égalité des utilités supplémentaires par euro dépensé

Supposons $U'_x/p_x > U'_y/p_y$

Une unité de y en mois, économie : p_v

Perte d'utilité : U',

Achat de combien d'unités de x : p_v/p_x

Gain d'utilité : $p_y/p_x.U'_x$

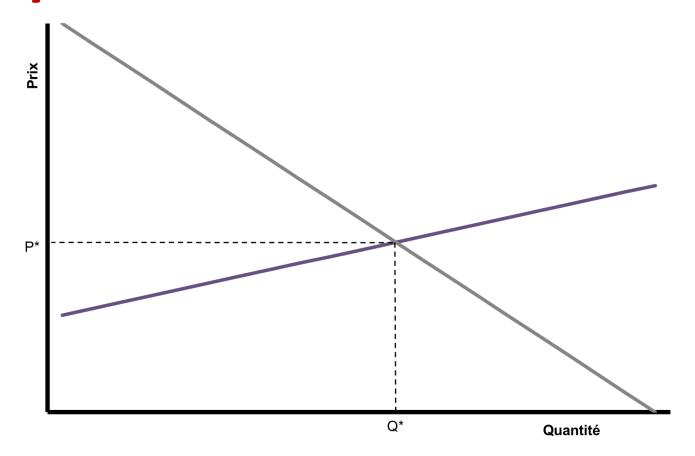
Les rapports utilité marginale/prix tous égaux

$$U'_x/p_x = U'_y/p_y$$

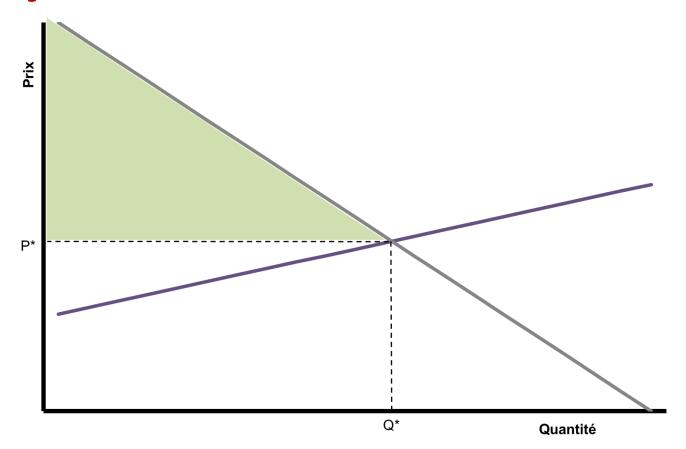
Égalité des utilités supplémentaires par euro dépensé

Supposons $U'_x/p_x > U'_y/p_y$

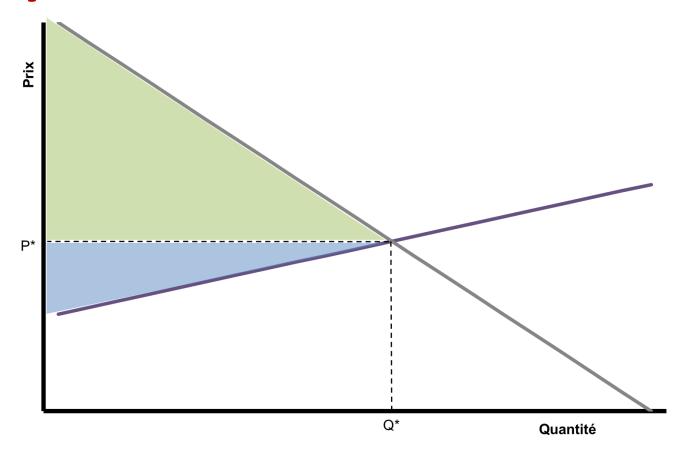
Une unité de y en mois, économie : p_v


Perte d'utilité : U',

Achat de combien d'unités de x : p_v/p_x


Gain d'utilité : $p_v/p_x.U'_x$

Variation globale d'utilité : p_v/p_x . U'_x - U'_v > 0


Le surplus du consommateur

Le surplus du consommateur

Le surplus du consommateur

Le principe du critère de surplus

L'économie comparée à la disposition à payer

Disposition marginale : indifférent entre acheter ou non Si on paie moins = économie ⇒ surplus du consommateur

Principe de Marshall (1890)

 $U'_x/p_x = U'_m/p_m$, $p_m = 1$, or $p_x = dmp$ donc $U'_x = dmp$. U'_m Donc la disposition à payer est une mesure de l'utilité Dans l'unité de l'utilité marginale de la monnaie $U'_m =$ l'utilité retirable de la meilleure utilisation d'1 euro Mesure additive avec comparaisons interpersonnelles

Les limites du surplus

Alfred Marshall (1890) Principles of Economics, London: Macmillan and Co.

This involves the consideration that a pound's worth of satisfaction to an ordinary poor man is a much greater thing than a pound's worth of satisfaction to an ordinary rich man: and if instead of comparing tea and salt, which are both used largely by all classes, we compared either of them with champagne or pineapples, the correction to be made on this account would be more than important: it would change the whole character of the estimate.

Les limites du surplus

Alfred Marshall (1890) Principles of Economics, London: Macmillan and Co.

On the whole however it happens that by far the greater number of the events with which economics deals, affect in about equal proportions all the different classes of society; so that if the money measures of the happiness caused by two events are equal, there is not in general any very great difference between the amounts of the happiness in the two cases. And it is on account of this fact that the exact measurement of the consumers' surplus in a market has already much theoretical interest, and may become of high practical importance.

Limites connues mais...

Critique de Pareto (1906)

L'unité de mesure d'utilité est elle-même une utilité Utilité de la monnaie dépend des préférences Et du niveau de revenu (utilité marginale décroissante)

> comparaison interpersonnelles de disposition à payer

Mais une utilisation qui perdure

Basé sur les préférences individuelles : "démocratique"

David Pearce, Giles Atkinson, Susana Mourato (2006) *Analyse coûts-bénéfices et environnement*, développements récents, OCDE

La référence de l'évaluation de la croissance (cf. séance 4)

La référence de l'évaluation coût-bénéfice

Transformation des unités spécifique en monnaie via la DàP

Plan de la session

- 1. Surplus et préférences révélées
- 2. Méthode hédoniste en environnement
- 3. Évaluation contingente, la valeur d'une vie
- 4. Unité commune hors disposition à payer

Méthode des prix hédonistes

Pas de prix de marché des biens non-marchands

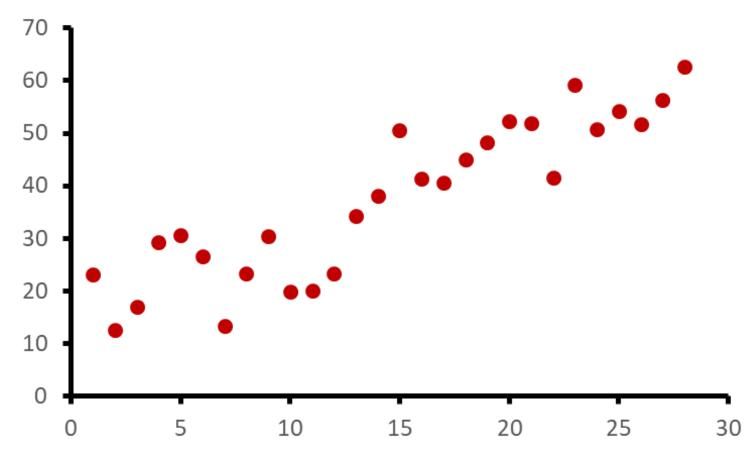
Or, évaluation socioéconomique *via* la disposition à payer Il faut évaluer une DàP fictive, un prix implicite Soit en demandant par enquête \rightarrow méthode contingente Soit hypothèse de prix implicite dans les prix d'autres biens

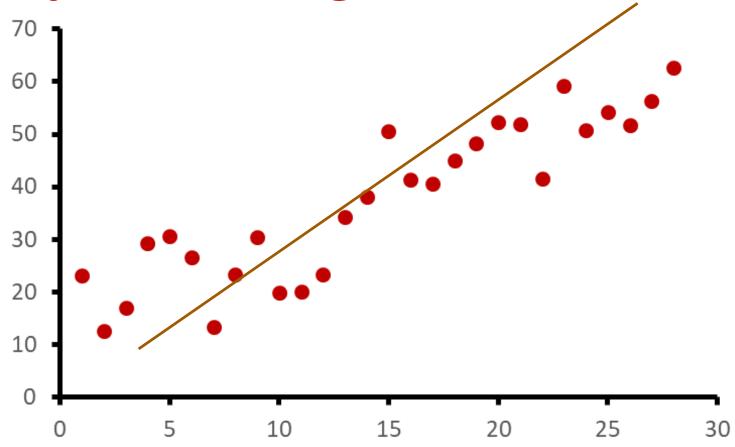
Exemple de prix hédoniste

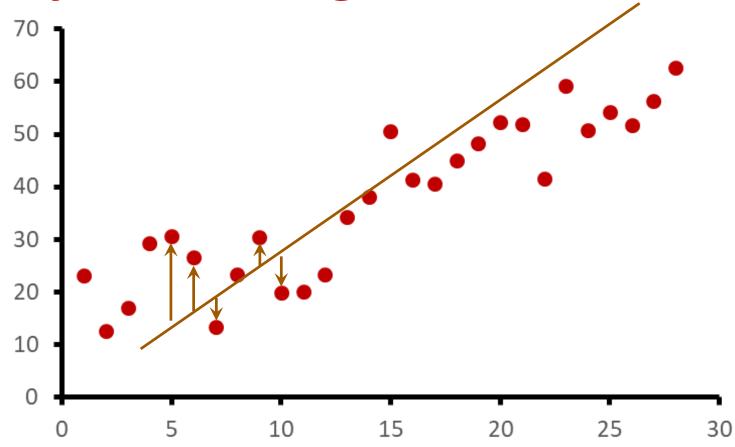
Supposons une personne valorisant l'air pur (ou vue sur lac) Alors DàP ↑ pour maison à l'air pur (ou en bord de lac) Principe de l'évaluation → extraire un prix implicite À partir des prix de beaucoup de maisons Expliquer toutes les composante du prix (dont le lac)

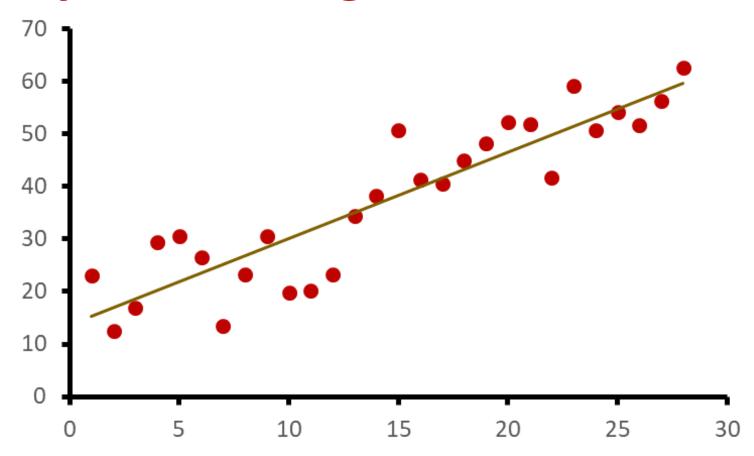
Mesurer les DàP pour la qualité

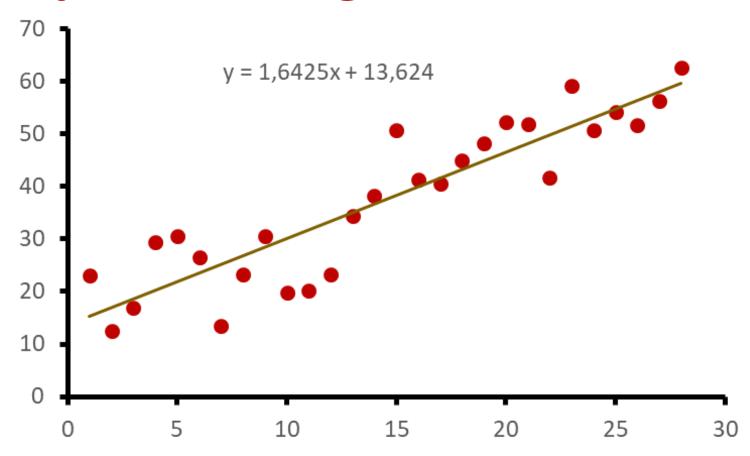
Andrew T. Court (1939) Hedonic price indexes with automotive examples, in The Dynamics of Automobile Demand, General Motors, NY, pp. 98-119

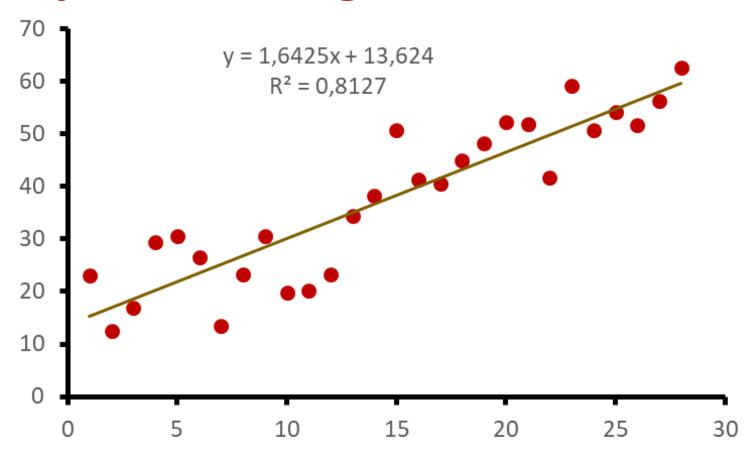

Les prix des voitures dans l'entre-deux guerres


Principe de régresser le (log) du prix des voitures
Sur le poids à vide, l'empattement et la puissance


En prenant en compte l'année \rightarrow déflation $\ln(Prix) = \alpha + \beta.\ln(Poids) + \gamma.\ln(Empat) + \delta.\ln(Puiss) + \eta.Année + \epsilon$


Interprétation


Si même poids W, empattement E et année A, +1% puiss C $ln(P+\Delta P) = \alpha + \beta.ln(W) + \gamma.ln(E) + \delta.ln(C+\Delta P) + \eta.A$ $ln(P) = \alpha + \beta.ln(W) + \gamma.ln(E) + \delta.ln(C) + \eta.A$ $\rightarrow ln(P+\Delta P) - ln(P) = \delta.ln(C+\Delta C) - \delta.ln(C)$ $\rightarrow ln(1+\Delta P/P) = \delta.ln(1+\Delta C/C) \rightarrow \Delta P/P = \delta.\Delta C/C$



Mesurer les DàP pour la qualité

Andrew T. Court (1939) Hedonic price indexes with automotive examples, in The Dynamics of Automobile Demand, General Motors, NY, pp. 98-119

Les prix des voitures dans l'entre-deux guerres

Principe de régresser le (log) du prix des voitures
Sur le poids à vide, l'empattement et la puissance

En prenant en compte l'année \rightarrow déflation $\ln(Prix) = \alpha + \beta.\ln(Poids) + \gamma.\ln(Empat) + \delta.\ln(Puiss) + \eta.Année + \epsilon$

Interprétation

Si même poids W, empattement E et année A, +1% puiss C $ln(P+\Delta P) = \alpha + \beta.ln(W) + \gamma.ln(E) + \delta.ln(C+\Delta P) + \eta.A$ $ln(P) = \alpha + \beta.ln(W) + \gamma.ln(E) + \delta.ln(C) + \eta.A$ $\rightarrow ln(P+\Delta P) - ln(P) = \delta.ln(C+\Delta C) - \delta.ln(C)$ $\rightarrow ln(1+\Delta P/P) = \delta.ln(1+\Delta C/C) \rightarrow \Delta P/P = \delta.\Delta C/C$

Évaluation de Court

	Percent change in price						
Period	Per inch (%)	Per cwt. (%)	Per HP (%)	Per year (%)	r		
1920-1925	2.01	2.35	0.80	-12.4	0.96		
1925-1930	1.82	4.02	0.30	-7.1	0.96		
1930-1935	0.31	5.66	0.55	-7.4	0.95		
1935-1937	0.01	5.76	0.53	-2.5	0.97		
1937-1939	0.15	2.95	0.71	2.5	0.93		

Andrew T. Court (1939) Hedonic price indexes with automotive examples, in *The Dynamics of Automobile Demand*, General Motors, NY, pp. 98-119

L'utilité de la vue de la mer

Travers, Nassiri, Appéré, Bonnieux (2008) Évaluation des bénéfices environnementaux par la méthode des prix hédonistes : une application au cas du littoral, Économie et Prévision n°185, 47-62

Achats de maisons individuelles (pas locations)

Le long du littoral du Finistère, en 2005 Enquêtes réalisées auprès des agences immobilière

185 observations de ventes

Données sur la maison

Année construction, nb pièces, surface, jardin, chauffage, travaux

Données sur le voisinage

Bruit, transports, revenu fiscal commune, taxes foncière/habitation

Données sur les acheteurs PCS, âge, origine géographique

Données sur la vue du littoral

Vue (total/partielle) depuis séjour/premier étage, aucune vue

L'utilité de la vue de la mer

Tableau 1 : estimation de la fonction de prix hédoniste des maisons dites habitables

Variables explicatives	Coefficients	<i>t</i> -Student	Significativité		
Constante	7,939	9,252	0,000		
GE03	-0,176	-2,275	0,024		
GE04	0,220	5,169	0,000		
BRUIT	-0,105	-2,565	0,011		
CUISAM	0,183	4,612	0,000		
URBA2	-0,147	-1,806	0,073		
SANITAIRE	0,147	3,140	0,002		
GARAGE	0,130	2,859	0,005		
VUEMER4	0,207	2,405	0,017		
CHAUFF2	-0,112	-2,807	0,006		
CHAUFF4	-0,231	-2,527	0,013		
LMJRUB1	0,023	2,613	0,010		
X14LAM	0,020	2,595	0,010		
X22LAM	0,015	5,266	0,000		
X24LAM	-0,009	-2,459	0,015		
X33LAM	0,025	2,720	0,007		
X44LAM	-0,007	-2,979	0,003		
NBPIECE	0,216	4,060	0,000		
NBPIECE4	-0,183	-3,284	0,001		
AGE40	0,001	1,721	0,087		
R^2	0,766				
R ² ajusté	0,736				
RESET (seuil 5%)	0,05	F(3,1	44) =2,60		
White (seuil 5%)	31,19	κ^2 (2)	8) = 41,33		

Maison dans le sud-Finistère (GE04)
Bruit de route passante (BRUIT)
Cuisine aménagée (CUISAM)
Périphérie de grande agglomération (URBA2)
Équipement sanitaire (SANITAIRE)
Existence d'un garage (GARAGE)
Vue sur mer (VUEMER4)
Type de chauffage (CHAUFF2, CHAUFF4)
Revenu fiscal moyen de la commune (X33LAM)

Travers, Nassiri, Appéré, Bonnieux (2008) Évaluation des bénéfices environnementaux par la méthode des prix hédonistes : une application au cas du littoral, Économie et Prévision n°185, 47-62

Plan de la session

- 1. Surplus et préférences révélées
- 2. Méthode hédoniste en environnement
- 3. Évaluation contingente, la valeur d'une vie
- 4. Unité commune hors disposition à payer

La vie humaine et points de vue

Valeur juridique de la vie humaine

Exemple dédommagement victimes du World Trade Center Une valeur pour un proche (conjoints, enfants) Liée à la perte de support financier et d'aide Et au préjudice moral de la perte d'un proche

Valeur d'arbitrage de la vie humaine

L'exemple de l'analyse coût-bénéfice du confinement ciblé Valeur pour la personne elle-même, utilité à poursuivre Éventuellement valeur pour les autres (pas que les proches) Ingénieur ou ouvrier envoyé comme chair à canon en 1914

Valeur productive de la vie

Un débat d'ingénieur en France

Commencé avec les mesures de sécurité routière

Abraham, Thédié (1960) *Le prix d'une vie humaine dans les décisions économiques*, Revue française de recherche opérationnelle, n° 6, 157-168

Éléments objectifs de nature économique

Pertes des salaires, de production et de consommation

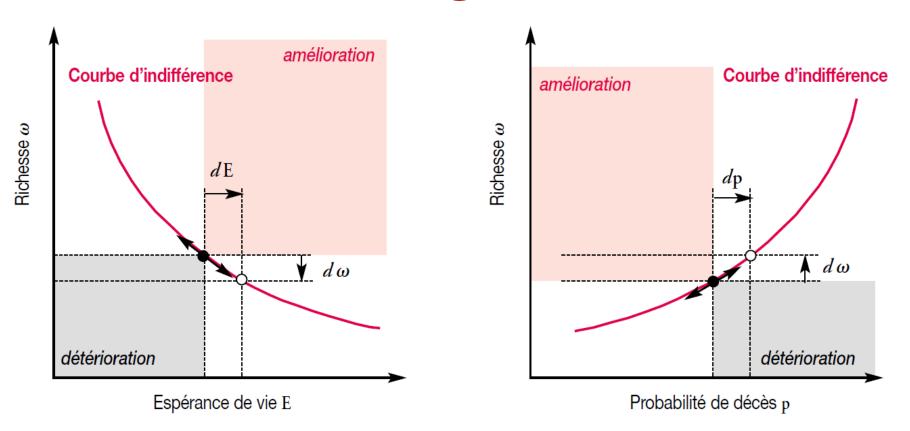
À travers des théories macroéconomique et de capital humain

Éléments affectifs, difficiles à calculer → pretium doloris

La reproduction d'inégalités sociales

L'analyse en capital humain suppose salaire = productivité Discrimination \rightarrow salaire $\downarrow \rightarrow$ valeur de la vie \downarrow Exemple du dépistage du cancer du col de l'utérus

Se baser sur les valorisations individuelles


Demander au gens combien ils valorisent leur vie Et en déduire une valorisation sociale collective

→ Évaluation contingente

Drèze (1962) L'utilité sociale d'une vie humaine, Revue française de recherche opérationnelle, n° 23, 93-128

Évaluation marginale généralisée

Valeur de toute sa vie non intelligible pour l'enquêté On lui demande de valoriser des bouts de sa vie À travers la DàP pour baisser certains risques DàP pour traitement baissant le risque de mortalité de 1 %

Arthur Charpentier, Béatrice Cherrier (2019) La valeur de la vie humaine, Risques n° 118

	Envi	ronnement	Santé	Trafic routier
Nombre d'études	51		250	65
Moyenne (€)	2 455 982		2 574 149	4 884 853
Minimum (€)	24 427		4 450	267 615
Maximum (€)	7	641 706	22 100 000	17 500 000
	État de santé	Quintile	Quintile	Quintile
		0 % - 20 %	40 % - 60 %	80 % - 100 %
Statistique	fair	4 380 000	4 400 000	7 890 000
	very good	8 800 000	8 830 000	12 135 000

235 000

590 000

250 000

Arthur Charpentier, Béatrice Cherrier (2019) La valeur de la vie humaine, Risques n° 118

Gunpoint

Capital humain

fair

very good

422 000

650 000

525 000

235 000

590 000

390 000

Une forte variabilité

Liée à qui on demande → fortes différences de DàP DàP mesure le rapport valorisation d'1% de risque En proportion de l'utilité d'un euro de consommation Dépend des besoins/alternatives de consommation

Comment cibler l'évaluation?

Sur une valeur moyenne valable pour tous ? Faire des différences de valeurs selon les personnes ?

→ risque de survaloriser les plus riches

Évaluer sur les personnes concernés ?

→ risque de discrimination selon principaux concernés

Plan de la session

- 1. Surplus et préférences révélées
- 2. Méthode hédoniste en environnement
- 3. Évaluation contingente, la valeur d'une vie
- 4. Unité commune hors disposition à payer

Arbitrages en médecine

Liste des donneurs d'organes

Ne marche pas sur le mode premier arrivé-premier servi Ni sur un processus de marché (enchère des DàP) Définition légale par arrêtés publiés au JO

Un processus d'analyse des priorités

Listes de priorités spécifiques aux greffons Priorité des moins de 18 ans en général Dérogations si faible probabilité d'accès à greffon apparié Greffons pancréatiques et rénaux :

« Dans tous les cas, la proposition n'est faite que si le donneur n'a pas d'antécédent de diabète ou d'alcoolisme. » https://www.agence-biomedecine.fr/IMG/pdf/v25guide-regles-de-repartition.pdf

Arbitrages en médecine

Il ne faut pas réanimer à tout prix et coûte que coûte. Il faut trier. Trier n'est pas décider qui va vivre ou mourir. C'est un acte d'humanité, et certainement une des choses les plus difficiles à maîtriser du métier. (...) En médecine de catastrophe, on alloue les moyens aux patients qui ont le plus de chance de survivre. (...) Nous ne sommes pas homéopathes. L'intubation, la ventilation mécanique, la sédation, l'adrénaline, la dialyse rénale, tout cela a des effets indésirables. (...) Ce n'est pas grave si le rapport bénéfice-risque a été bien pesé.

Interview de Damien Barraud dans Libération le 21 octobre 2020

Décision de l'ampleur des soins

Loi Leonetti-Claeys, consentement réel ou reconstitué Mais dans la limite des soins proposés par l'équipe médicale Selon risques, chances de réussite et qualité de vie attendue

Objectifs des décisions publiques

Un double objectif

- 1. Arbitrer entre des intérêts contradictoires Allouer plus à certains projets et moins à d'autres Prélever plus d'impôts, et à qui ?
- 2. Respecter les préférences de la population Ne pas sombrer dans le paternalisme, l'objectif est le bien-être

Méthodes classiques en santé

Analyse coûts-bénéfices

Problèmes mis en évidences ci-dessus → DàP selon revenus Respecte relativement 2 mais biaisé vis-à-vis de 1

Analyse coûts-efficacité

Construire un indicateur d'impact sanitaire pur, et rapport au coût Respecte relativement 1 mais problème pour le 2 en général

Exemple d'analyse coût-efficacité

Les QALYs (quality adjusted life years)

Une année en bonne santé vaut q_i = 1, sans vie vaut q_i = 0 Année en mauvaise santé vaut q_i ∈]0 ; 1[Espérance de vie pondérée par le coefficient $Q_i = \sum_{y=t}^{EV} q_y$ Efficacité $\Delta Q_i = Q_{i,\text{avec intervention}} - Q_{i,\text{sans intervention}}$ Ratio coût-efficacité $RCE = (\sum_{i \in pop} \Delta Q_i)/Coût$

Utilisation des QALYs

Objectif 1 : pas de favorisation des plus riches Même *QALY* pour tous par pathologie, mais biais entre pathologies Objectif 2 : pas de prise en compte des préférences indiv. Pas de différences interpersonnelles, mais préférences moyennes

Les faiblesses des QALYs

Fleurbaey et al. (2012) Évaluation des politiques de santé : pour une prise en compte équitable des intérêts des populations, Économie et Statistique, n° 455-456, 11-36

Résultats de santé comptabilisés de façon agrégée

Problème de sommes pondérées, population *versus* gravité Traiter affection bénigne fréquente > affection grave rare Exemple Oregon : caries > opérations de l'appendicite

Problème de valorisation des états chroniques

Si habituation, le q sera proche de 1

- → Traitement curatif paraît avoir un impact limité Mais si on donne une valeur proche de 0
 - → survie de ces personnes de peu de valeur Sous-valorisation problèmes annexes de ces population

Méthodes d'estimation des QALYs

Méthodes sur jugement externe

Systèmes descriptifs standard Exemple : questionnaire EQ-5D du Groupe EuroQol i. mobilité ; ii. soins personnels ; iii. activités habituelles iv. douleur/inconfort ; v. anxiété/dépression

Méthodes subjectives, enquêtes

Échelle visuelle analogique : autoévaluation santé sur 0-100 0 = mort ; 100 = parfaite santé

Échange de temps: rester en mauvaise santé x temps ou rétablis en parfaite santé mais espérance de vie ψ **Pari standard**: rester en mauvaise santé x temps ou intervention probabilité π parfaite santé, $(1-\pi)$ mourir

Master EDO parcours EMD3P & ESSI année universitaire 2024-2025 — semester 6

Évaluation socioéconomique des projets

Séance 7 Unité de mesure commune des effets

Cours proposé par **Clément Carbonnier** clement.carbonnier02@univ-paris8.fr http://carbonnier.eu/evaluation.html